Transfer Learning for Collective Link Prediction in Multiple Heterogenous Domains
نویسندگان
چکیده
Link prediction is a key technique in many applications such as recommender systems, where potential links between users and items need to be predicted. A challenge in link prediction is the data sparsity problem. In this paper, we address this problem by jointly considering multiple heterogeneous link prediction tasks such as predicting links between users and different types of items including books, movies and songs, which we refer to as the collective link prediction (CLP) problem. We propose a nonparametric Bayesian framework for solving the CLP problem, which allows knowledge to be adaptively transferred across heterogeneous tasks while taking into account the similarities between tasks. We learn the inter-task similarity automatically. We also introduce link functions for different tasks to correct their biases and skewness of distributions in their link data. We conduct experiments on several real world datasets and demonstrate significant improvements over several existing state-of-the-art methods.
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملA Link Prediction Method Based on Learning Automata in Social Networks
Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...
متن کاملAcross-Model Collective Ensemble Classification
Ensemble classification methods that independently construct component models (e.g., bagging) improve accuracy over single models by reducing the error due to variance. Some work has been done to extend ensemble techniques for classification in relational domains by taking relational data characteristics or multiple link types into account during model construction. However, since these approac...
متن کاملCollective Inference and Multi-Relational Learning for Drug–Target Interaction Prediction
State-of-the-art methods for drug-target interaction prediction make use of interaction networks, drug similarities, and target similarities. In this paper we study the importance of multi-relational and collective prediction in these domains. We implement different models with probabilistic soft logic (PSL) to empirically show the effect of each assumption on prediction performance and demonst...
متن کاملMulti-Relevance Transfer Learning
Transfer learning aims to faciliate learning tasks in a label-scarce target domain by leveraging knowledge from a related source domain with plenty of labeled data. Often times we may have multiple domains with little or no labeled data as targets waiting to be solved. Most existing efforts tackle target domains separately by modeling the ‘source-target’ pairs without exploring the relatedness ...
متن کامل